汽车飞轮电池指的是什么意思(飞轮电池是什么电池)

作者:汽车盟 | 内容提供:http://12364.com/|

今天给各位分享汽车飞轮电池指的是什么意思的知识,其中也会对飞轮电池是什么电池进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

飞轮电池的研究进展

1994年,美国阿贡(ANL)国家实验室用碳纤维试制一个储能飞轮:直径38厘米,质量为11千克,采用超导磁悬浮,飞轮线速度达1000米/秒。它储的能量可将10个100瓦灯泡点燃2~5小时。该实验室目前正在开发储能为50千瓦小时的储能轮,最终目标是使其储能达5000千瓦小时的储能飞轮。一个发电功率为100万千瓦的电厂,约需这样的储能轮200个。

1992年美国飞轮系统公司(AFS)开发了一种用于汽车上的机-电电池(EMB),每个“电池”长18厘米,直径23厘米,质量为23千克。电池的核心是一个以20万转/分旋转的碳纤飞轮,每个电池储能为1千瓦小时,它们将12个“电池”放在IMPACT轿车上,能使该车以100千米/小时的速度行驶480千米。机-电电池共重273千克,若采用铅酸电池,则共重396千克。机-电电池所储的能量为铅酸电池的2.5倍,使用寿命是铅酸电池的8倍,且它的“比功率”(即爆发力)极高,是铅酸电池的25倍,是汽油发动机的10倍,它可将该车在8秒钟内由静止加速至100千米/小时。

日本曾利用飞轮“比功率”高的特性设计了一个引发可控热核聚变的装置,如图2所示。该装置的飞轮直径达6.45米,高1米,重255吨。它所储存的能量与挂有150个车厢的列车以100千米/小时的速度行驶时所具有的能量相当。故将这些能量在极短时间释放出来足以引发核聚变。

我国对飞轮的研究,始于1993年,在理论分析及模型试验方面也已取得不小的进展。以飞轮作储能装置,其可行性目前已无人怀疑。

由英利集团投资研究的飞轮储能技术,目前已经取得了阶段性成果,并且有望在十二五期间实现量产。2011年1月,英利自主研发出1kWh储能飞轮样机。同年9月,国内首台20kWh磁悬浮飞轮储能样机也在英利下线。此后,由英利投资的北京奇峰聚能科技有限公司经过国家科技部审批,在国家高技术研究发展计划(863)高性能物理储能项目中承担了磁悬浮储能飞轮技术研究课题研究工作。“飞轮磁悬浮储能装备是英利集团驾驭新能源产业发展,培育新的经济增长点、提升整体竞争力的战略选择。”北京奇峰聚能科技有限公司总经理蒋涛表示,英利集团在“十二五”期间将重点投入大容量储能飞轮研发,争取实现大储能装置的规模化生产。

21及22世纪,太阳能(包括其派生的风能、浪能)可能变为唯一允许使用的能源,再辅以飞轮储能,太阳能电厂即可提供全天候的能源,这时,也只有这时,地球村的天空才会变得蔚蓝,水才会清莹,人类“绿色能源”之梦才会彻底实现。

新能源车是以什么为动力驱动汽车行驶?

新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。

二、混合动力汽车:

1、广义上讲,混合动力汽车(Hybrid Vehicle)是指车辆驱动系统由两个或多个能同时运转的单个驱动系统联合组成的车辆,车辆的行驶功率依据实际的车辆行驶状态由单个驱动系统单独或共同提供。

2、通常所说的混合动力汽车,一般是指油电混合动力汽车(Hybrid Electric Vehicle),即采用传统的内燃机(柴油机或汽油机)和电动机作为动力源,也有的发动机经过改造使用其他替代燃料,例如压缩天然气、丙烷和乙醇燃料等。

汽车飞轮电池指的是什么意思(飞轮电池是什么电池)-第1张图片

飞轮电池的背景

使用化学电池的电动汽车目前已试验过几十年,但至今尚未进入实用阶段。太阳能、风能、潮夕能、海浪能,都存在储存问题,目前主要靠化学电池,但受到化学蓄电池寿命及效率的制约,至今尚不能广泛应用。以上诸多问题,促使人们寻求一种效率高、寿命长、储能多、使用方便,而且无污染的绿色储能装置。出乎意料,古老的“飞轮”变成了首选对象。[1]

“飞轮”这一储能元件,已被人们利用了数千年,从古老的纺车,到工业革命时的蒸汽机,以往主要是利用它的惯性来均衡转速和闯过“死点”,由于它们的工作周期都很短,每旋转一周时间不足一秒钟,在这样短的时间内,飞轮的能耗是可以忽略的。现在想利用飞轮来均衡周期长达12~24小时的能量,飞轮本身的能耗就变得非常突出了。能耗主要来自轴承摩擦和空气阻力。人们曾通过改变轴承结构,如变滑动轴承为滚动轴承、液体动压轴承、气体动压轴承等来减小轴承摩擦力,通过抽真空的办法来减小空气阻力,轴承摩擦系数已小到10-3。即使如此微小,飞轮所储的能量在一天之内仍有25%被损失,仍不能满足高效储能的要求。再一个问题是常规的飞轮是由钢(或铸铁)制成的,储能有限。例如,欲使一个发电力为100万千瓦的电厂均衡发电,储能轮需用钢材150万吨!另外要完成电能机械能的转换,还需要一套复杂的电力电子装置,因而飞轮储能方法一直未能得到广泛的应用。

近年来,飞轮储能技术取得突破性进展是基于下述三项技术的飞速发展:一是高能永磁及高温超导技术的出现;二是高强纤维复合材料的问世;三是电力电子技术的飞速发展。为进一步减少轴承损耗,人们曾梦想去掉轴承,用磁铁将转子悬浮起来,但试验结果是一次次失败。后来被一位英国学者从理论上阐明物体不可能被永磁全悬浮(Earnshaw定理),颇使试验者心灰意冷。出乎意料的是物体全悬浮之梦却在超导技术中得以实现,真像是大自然对探索者的慰藉。

超导磁悬浮原理是这样的:当我们将一块永磁体的一个极对准超导体,并接近超导体时,超导体上便产生了感应电流。该电流产生的磁场刚好与永磁的磁场相反,于是二者便产生了斥力。由于超导体的电阻为零,感生电流强度将维持不变。若永磁体沿垂直方向接近超导体,永磁体将悬空停在自身重量等于斥力的位置上,而且对上下左右的干扰都产生抗力,干扰力消除后仍能回到原来位置,从而形成稳定的磁悬浮。若将下面的超导体换成永磁体,则两永磁体之间在水平方向也产生斥力,故永磁悬浮是不稳定的。

利用超导这一特性,我们可以把具有一定质量的飞轮放在永磁体上边,飞轮兼作电机转子。当给电机充电时,飞轮增速储能,变电能为机械能;飞轮降速时放能,变机械能为电能。图1是储能飞轮装置的示意图,图中超导体是由钡钇铜合金制成,并用液氮冷却至77K,飞轮腔抽至10-8托的真空度(托为真空度单位,1Torr(托)=133.332Pa),这种飞轮能耗极小,每天仅耗掉储能的2%。

飞轮储能大小除与飞轮的质量(重量)有关外,还与飞轮上各点的速度有关,而且是平方的关系。因此提高飞轮的速度(转速)比增加质量更有效。但飞轮的转速受飞轮本身材料限制。转速过高,飞轮可能被强大的离心力撕裂。故采用高强度、低密度的高强复合纤维飞轮,能储存更多的能量。目前选用的碳纤维复合材料,其轮缘线速度可达1000米/秒,比子弹速度还要高。正是由于高强复合材料的问世,飞轮储能才进入实用阶段。

飞轮储能系统构成、核心技术及应用

1 引言

随着人类对能源的需求越来越大,人们对能源的控制技术,特别是对电能的储存技术越来越重视。目前常见的电储能技术有化学电池储能、蓄水储能、超导储能、超级电容储能和飞轮储能。

化学电池技术已经很成熟,应用广泛,但它的效率较低,通常只有(70~85)%,功率密度低,充电很慢,通常是小时级,更重要的是化学电池的循环使用寿命比较短,这样就增加了电池的使用成本。蓄水储能的效率也很低,通常只有75%,因为蓄水储能需要庞大的蓄水装置,其储能密度较低,只有约0.27Wh·kg-1,而且受到环境的影响很大,无法便携使用。超导储能是新型的高效储能技术,然而它不具备模块化特点,而且一般都需要创造低温环境,适应性不强。超级电容储能也是新型的高效储能技术,目前它的储能密度还比较低,约为(2~10)Wh·kg-1,该技术还在实验阶段。

飞轮储能系统储能密度大,功率密度高,对环境的要求低,可模块化,其充放电的时间可以达到分钟级,而且容易检测放电深度,可以应用的场合广泛,同时飞轮储能的使用寿命长,维护简单,大大降低了电能储备成本[1].随着电力电子技术、磁悬浮技术、新材料开发研究等技术的不断发展,飞轮储能技术变得越来越完善,应用的范围也遍及交通、供电、军工、航空航天等领域,成为目前最具有开发前途的储能技术之一。

2 飞轮储能系统原理及结构

2.1 飞轮储能系统原理

飞轮储能系统又被称为飞轮电池,是机械能与电能的转换装置。飞轮储能系统原理图,如图1所示。从图1中可以看出能量的转化过程。飞轮储能系统的工作模式有三种:充电、放电和能量保持。通常给飞轮充电的能量有电能和机械能两种,如图1所示。目前电能充电方式应用较多,机械能充电在汽车制动能量回收、孤岛风能储存等领域都可以应用。放电时,飞轮带动发电机使发电机发电,输出的电能经过电力电子设备变成可用的电能。能量保持阶段,飞轮储能系统既不充电也不放电,保持额定转速运行。

2.2 飞轮储能的结构及能量存储

飞轮储能系统最为常见的结构示意图,如图2所示。主要由飞轮、电机、轴承、真空室和电力电子设备组成。

从式(1)和式(2)可以看出,飞轮储能系统存储的能量与飞轮的质量、半径和旋转角速度呈正相关。因此要增大飞轮存储能量,主要通过增大飞轮的轮缘质量和飞轮转速。

3 飞轮储能关键技术分析

飞轮是储能装置,所以飞轮储能关键技术中最重要的两个因素就是储能和减少损耗。为了提高飞轮转速,飞轮的材料与高速电机的选择尤其重要。使用真空室能大大减少飞轮与空气的摩擦损耗,使用磁轴承能够大大降低支承摩损并提高使用寿命。

3.1 飞轮材料的选择

飞轮的储能密度和飞轮能承受的强度会直接影响飞轮材料的选择。飞轮的储能密度e为:

e=ks∕σρ(3)

式中:ks-飞轮形状系数;ρ-飞轮材料的密度,kg/cm3;σ-飞轮材料的许用应力,MPa.

由式(3)可以看出,飞轮材料密度成反比,与飞轮材料的许用应力成正比。几种常见的用于飞轮的材料[2],如表1所示。从数据中可以看出碳素纤维密度小,强度高,是其中最好的选择。同时,使用碳素纤维制成的飞轮一旦发生解体,飞轮本身会变成絮状物飞出,降低了事故带来的危害。

3.2 真空室

当前真空室的真空度达到了10-5Pa级,用于减少飞轮旋转过程中与空气的摩擦,同时也防止外力影响飞轮正常运行。真空室可以使用透明的高强度玻璃钢,这样方便观测飞轮的运行状况。同等气压下氦气的导热性是空气的七倍,与飞轮的摩擦损耗大约只有空气的七分之一,并且充入氦气的工艺更简单,因此选择氦气作为真空室的介质气体具有一定优势。

3.3 支承技术

在飞轮储能系统的众多损耗中,轴承的损耗占据了很大的比例,随着各种先进轴承技术的问世,这部分损耗可以被大大的减少。下面将介绍几种用于飞轮储能系统的轴承。

2 of 2

3.3.1 机械轴承

较为普遍的机械轴承有滚动轴承、滑动轴承、挤压油膜阻尼轴承和陶瓷轴承等,由于滚动轴承和滑动轴承的摩擦损耗相对较大,所以在高速飞轮储能系统中一般只用做辅助轴承,挤压油膜阻尼轴承和陶瓷轴承在飞轮储能中有所应用[3].

3.3.2 被动磁轴承

(1)永磁轴承是被动磁轴承的一种,是利用永磁体使两个或多个磁环在轴向或是径向悬浮。随着这几年永磁体的不断发展,其承载力也大大提高,应用的越来越广泛。然而根据Earnshaw定理,仅依靠永磁体无法使物体在空间六个自由度都达到稳定悬浮,稳定悬浮至少需要其中一个自由的上的主动控制[4].

(2)超导磁轴承也是被动磁轴承的一种。超导体在超导环境下具有迈斯纳效应,当超导体处于磁场中时,其内部的磁场恒等于零,即超导体在磁场中表现出完全抗磁性。超导体在磁场作用下其表面产生无损的感应电流,该电流在超导体中没有损耗,同时形成了一个和原磁场大小相等、方向相反的镜像磁场,如图3所示。这种磁场可以使物体稳定悬浮。

3.3.3 主动磁轴承

主动磁轴承又称电磁轴承,是通过改变控制电路中电流的通断和大小来控制磁场的变化,同时通过实时反馈位置信号与输出电流信号及时调整控制电流,从而使轴承定子、转子之间能够稳定悬浮,主动磁轴承控制策略框图,如图4所示。

3.3.4 混合轴承

在实际应用中,通常将上述几种轴承结合起来使用达到优势互补。

(1)机械轴承与永磁轴承结合。机械轴承主要的缺点是摩擦损耗较大,永磁轴承可以帮助克服重力到来的定子、转子之间的压力,从而减少摩擦损耗。

(2)超导体与永磁体混合轴承。超导体作为定子,永磁体做转子,转子能够悬浮在某一位置。同时超导体中俘获的磁通由于钉扎力的存在不会随便运动,保证了轴向稳定性,使得转子稳定悬浮[5].

(3)电磁与永磁体混合轴承。为了减少功耗,利用永磁体产生偏置磁场,电流产生控制磁场,图三极混合磁轴承[6],如图5所示。

4 飞轮储能系统的应用

由于飞轮储能系统具有能量密度大、效率高、无污染等优点,技术水平也日益完善,已经在越来越多的领域中得到应用。

4.1 在电力系统中的应用

4.1.1 电力调峰

飞轮储能系统用于电力调峰具有储能、释能速度快,效率高,同时不受地理环境影响的优点。当用电低谷时,将产生的多余电力用于驱动飞轮储能;当用电高峰时,飞轮带动发电机运行,通过电力电力设备将机械能转化为与电网匹配的电能。2008年,美国Beacon Power公司在马萨诸塞州的Tyngsboro建设的一座5MW飞轮储能调峰、调频电厂投入商业使用,电厂总效率达到85%,该系统响应时间为4s,相比较于需要5min响应时间的传统发电机调节来说优势很明显[7].

4.1.2 不间断供电

为了避免政府重要部门、军事指挥中心、医院手术楼、计算中心等重要用电场合停电或者电能质量不稳定,都会使用不间断供电系统(UPS)。过去常使用化学电池,虽然其技术成熟,但使用寿命较短,不支持频繁的开关操作,据业界统计,UPS系统的故障70%都是由化学电池引起的。美国Active Power公司于2007年将飞轮储能技术运用在中国网通山西省通信公司太原第二枢纽楼的UPS中[8].在市电正常时,飞轮相当于一台低耗空载电动机,转速维持在7700r/min;当市电异常或停电时,飞轮系统能够瞬间供电。

4.2 在交通工具中的应用

4.2.1 车载飞轮电池

随着能源日益短缺和对环境保护的重视,世界各地都在研究汽车的新动力,而用飞轮储能系统代替内燃机具有很好的前景,称之为车载飞轮电池。车载飞轮电池具有清洁无污染、充电快捷等优点。上世纪80年代,瑞士研究出第一辆飞轮电池汽车的充电时间控制在2min中内;90年代末,美国Texas大学将飞轮储能系统应用于军用车辆中,该系统可以间歇性的提供5MW的输出脉冲,连续输出功率为350k W,最小的空载损耗小于1000W,可以满足14-ton的军用侦查车辆的脉冲电力需求[9].

4.2.2 飞轮混合电池

飞轮储能系统也可以与内燃机或者化学电池并用于汽车中,当汽车下坡或是刹车时,将汽车的动能转化为飞轮的机械能储存;当汽车加速、上坡等需要短时间大功率输出时,飞轮再将能量释放出来。这样可以使汽车节约大约30%的能量,也使加速度更大[10].由于轨道交通制动比公路汽车更有规律性,飞轮在其中能够在回收巨大能量。

4.3 在航空航天中的应用

飞轮储能系统使用寿命长,非常适合对卫星供电。同时,利用飞轮的动量矩可以有效地对卫星的姿态进行控制,代替原来的化学电池可以减少了卫星的重量。1986年2月,法国发射“SPOT”卫星,首次将飞轮技术运用于航天器,上面的3个反作用飞轮使卫星对地球的指向控制精度为0.15°,的姿态稳定达到0. 0001°/s.

5 飞轮储能关键技术发展趋势

随着技术的不断进步,飞轮储能向大容量、高效率、无污染、高安全性、适应性强的方向发展,飞轮储能技术未来的研究重点应该包括以下几个方面:

(1)新材料的应用。使用新型的复合材料可以有效地增加飞轮的强度与储能密度,高温超导材料的突破也将为超导飞轮赢得更大的优势。

(2)磁轴承的研究。磁轴承的使用将使飞轮储能系统的损耗大大减少,同时增加其使用寿命,对飞轮速度的提升也大有帮助。

(3)高速电机的研究。高速电机的研究将提供足够的动力使飞轮能够携带更大的能量,增大飞轮电池的续航能力。

(4)使用先进的控制方法。先进的控制方法能使系统效率高,响应速度快,飞轮的高速问题和损耗问题也能有效解决。现代控制方法向着智能控制的方向发展,常见的有模糊控制、神经网络控制、自适应控制等。

(5)模块化建设。将多个飞轮列阵式的运行,实现飞轮单元的模块化。这样就可以大大扩充储能的规模,同时也增大了负载能力。

6 结论

目前飞轮储能还不是主流的储能方式,但其表现出来的潜质让人们寄予厚望,尤其是它储能密度大、效率高、充放电快捷、清洁无污染等特点得到人们认可。这里对飞轮储能系统的结构原理、关键技术、应用和发展趋势都做了介绍与分析,并指出了飞轮储能存在的局限性,通过这些不足分析了它的关键技术所需要解决的问题。由于飞轮储能在能源领域具有很多优势,因此对其研究具有重大意义。

关于微控新能源

深圳微控新能源技术有限公司(简称微控或微控新能源)是全球物理储能技术领航者。公司全球总部位于深圳,业务覆盖北美、欧洲、亚洲、拉美等地区,凭借“安全、可靠、高效”的全球领先的磁悬浮能源技术,产品与服务广泛受到华为、GE、ABB、西门子、爱默生等众多世界500强企业的信赖。

面向未来能源“更清洁、高密度、数字化”的三大趋势,公司持续致力于为战略性新兴产业提供能源运输、储存、回收、数据化管理提供系统解决方案。

电动车用飞轮储能,40年前的技术又热起来了?

文/田忠朝

大家应该见过拖拉机的单缸发动机,侧面都有一个大大的铁盘子,这个就是飞轮,可以利用高速旋转的惯性能量稳定发动机转速,获得平稳动力输出。

但如今有人想把这个大飞轮用在电动车上,当然,作用不是稳定动力输出,而是看中了它的储能特性。

有外媒报道,伦敦大学城市学院与Dynamic Boosting Systems公司合作研发了一项飞轮储能装置,即飞轮电池,可以为电动车供电。

你可以把它理解为这就是一个机械电

简单来说就是通过电动/发电互逆式双向电机,以物理的方式实现电能与飞轮机械动能之间的相互转换和储存。而我们常说的锂电池属于化学电池,将化学能与电能相互转化。

它的结构也不算复杂,典型的飞轮储能系统由飞轮本体、轴承、双向电机、电力转换器和真空室5个主要组件构成。

飞轮本体是飞轮储能系统的核心部件,作用是力求提高转子的极限角速度,减轻转子重量,最大限度地增加飞轮储能系统的储能量,多采用碳素纤维材料制作。

双向电机在储能时作为电动机运行,由外界回收能量驱动,加速飞轮旋转,此时电能转化为动能;在释能时,电机又转变为发电机,飞轮带动电机发电,向驱动电机供电,完成机械能向电能转化,在这个过程中飞轮转速会不断下降。

电力转换器是为了提高飞轮储能系统的灵活性和可控性,并将输出电能通过调频、整流或恒压等变换为满足负荷供电要求的电能。

真空室的主要作用是提供真空环境,降低飞轮旋转时的风阻损耗。

轴承的性能直接影响飞轮储能系统的可靠性、效率和寿命。飞轮储能系统多采用磁悬浮系统,减少电机转子旋转时的摩擦,降低机械损耗,提高储能效率。

听起来好像很新奇,但其实这项技术早在上世纪八十年代初就已经出现了,当时瑞士Oerlikon工程公司,成功研制出了一辆完全由飞轮驱动的公共汽车。

你可能会好奇,飞轮电池的功率有多大?

在2007年保时捷也曾研究过飞轮电池,并在2009年将这一技术用在了勒芒911 GT3 RHybrid赛车上,当时副驾驶座椅下面安装了一套飞轮储能系统,它的重量才103磅(约46.7kg)。

在全速下,飞轮的转速可以接近4,0000rpm ,16英寸直径的飞轮可以提供0.2kWh的能量。不要看它容量很小,但功率很大,它可以提供163马力(约120kW)长达6秒的功率输出,而且可以频繁的快速充放电,这为当时的911赢得了不少比赛时间。

因为正常情况下,赛车在激烈驾驶中急加速或急减速都会有极大的功率输入或输出,而大功率对化学电池寿命都有极大的损伤,据说在一场24小时的纽伯格林比赛中,电池就要更换三次。

而采用飞轮电池则无需换电池,在无需维护的情况下能够使用25年,反复充放电100万次也不会出现损耗。而且可以说它几乎没有功率限制,类似超级电容,可以快速充放电。

另外飞轮电池吸收刹车动能的效果也优于化学电池,比如一般车辆减速度只有0.3g,而飞轮电池能让赛车减速度达到1g,从而减少制动片磨损,同时还能提升25%的燃油效率。一般一场拉力赛普通车型要换2-3此刹车片,而飞轮电池车型只需更换一次。

这些减少的更换次数都可以为比赛赢得大量时间。后来在保时捷918概念车上,也出现过飞轮储能系统,可以为前桥两个电机提供2×75kW的额外动力。

可以说飞轮电池在技术上,性能指标上,安全性上,都很适合汽车使用,但为什么没有发展起来呢?

还是因为它性价比低,虽然功率大,但容量难以提升,所以不适合用于跑里程的电动车,只适合用于需要大功率的车型,例如跑车、卡车等。

事实上,考虑到飞轮储能量大,储能密度高,充电快捷,充放电次数无限,国外不少科研机构已将飞轮储能引入风力发电系统,即:风力发电机组+内燃机组+飞轮储能。

例如美国的Vista Tech Engineering,将飞轮引入到风力发电系统,实现全程调峰,飞轮机组的发电功率达到300kW,大容量储能飞轮的储能为277kW/h。

而随着复合材料、磁支撑、动发一体机和多学科优化设计技术的不断进步,飞轮储能容量或许能进一步提升,应用于汽车行业前景依然广阔。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

关于汽车飞轮电池指的是什么意思和飞轮电池是什么电池的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

相关文章